Introduction

HP Prime is the latest advanced graphing calculator from Hewlett-Packard. It incorporates a full-color, multi-touch screen and comes pre-loaded with HP Apps. HP Prime has a Home view, with a history of your numerical calculations, as well as a CAS view, with a history of your symbolic computations.

HP Prime has three design principles:

- Provide a high degree of mathematical fidelity across multiple mathematical representations
- Give students the touch-active and app-based experiences with mathematics that they have come to expect from mobile display technologies
- Deliver a simple and seamless experience for mathematical exploration and problemsolving

Home and CAS

With HP Prime, you can choose whether to operate numerically in the Home view or symbolically using the CAS in the CAS view. For example, press semes and enter $\sqrt{8}$ in the Home view to see 2.828 ... or press cefins and enter the same expression in the CAS view to see $2 \sqrt{2}$.

Things you can do in both CAS and Home views:

- Tap an item to select it or tap twice to copy it to the command line editor
- Tap and drag up or down to scroll through the history of calculations
- Press $\underset{\substack{\text { Menve } \\ \text { Pasise }}}{\text { - }}$ to retrieve a previous entry or result from the other view

- Press Unis
- Press | Esc |
| :---: |
| Cleor |
| - | to exit these menus without making a selection
- Tap Sto - Copy, and Show menu buttons once to activate

RPN Note: HP Prime supports RPN entry. In Home Settings (Shift seimes), navigate to Entry and select RPN. These workshop materials use the default Textbook setting.

Example: Infinite Series

Suppose we wish to explore the series $1+\frac{3}{2}+\frac{5}{4}+\frac{7}{8}+\frac{9}{16} \ldots$

To begin with, we can compute the first few partial sums.

1. Press seitims to enter the Home view.
2. Type 1 and press \square
3. Press \square $3 \longdiv { x ^ { + } \div } 2$ \square
 proper fraction, and improper fraction forms
4. Continue as shown to the right until you have the first 5 partial sums

Another approach is to use lists. In the figure to the right, the List L1 is first defined to contain the $1^{\text {st }}$ partial sum (1), followed by the numerator and denominator of the following term. The second line adds the next term to the sum, then adds 2 to the numerator and multiplies the denominator by 2 , and stores the result back into list L1. From there, just pressing $\underset{\sim}{\text { Enter }}$ generates the partial sums.

To use the CAS, we observe that the sum can be rewritten symbolically as
$1+\frac{3}{2}+\frac{5}{4}+\frac{7}{8}+\frac{9}{16} \ldots=\sum_{n=0}^{\infty} \frac{1+2 n}{2^{n}}$

1. Press $\underset{\substack{\text { Cetins }}}{\text { do open the CAS view. }}$
2. Press unts to open the template menu and select the summation template
3. To enter $n=0$, press AlphA Shiff ${ }^{(1)}$
4. To enter $+\infty$ at the top, tap on the top and press Ans $^{+}$, then Shift and tap on ∞

	Statistics 2Var	10845
1	4	
Ans $+\frac{3}{2}$	$\frac{5}{2}$	
Ans $+\frac{5}{4}$	$\frac{15}{4}$	
Ans $+\frac{7}{8}$	$\frac{37}{8}$	
Ans $+\frac{9}{16}$	$\frac{83}{16}$	
Sto +		

5. Tap on the right template box and enter the rational expression.
6. When you are done, press \square $\underset{\approx}{\text { Enter }}$

HP Apps

HP Apps are designed to explore mathematical topics or solve problems. All HP Apps have a similar structure, with numeric, graphic and symbolic views to make them easy to learn and easy to use. Fill the app with data while you work, and save it with a name you'll remember. Then reset the app and use it for something else. You can come back to your saved app anytime-even send it to your colleagues! HP Apps have app functions as well as app variables; you can use them while in the app, or from the CAS view, Home view, or in programs.

Press $\begin{gathered}\text { Apps } \\ \text { nto } \\ \text { to see the App Library. Drag with your finger to browse the library, then tap the }\end{gathered}$ icon of the app you want to use. The HP Apps are color-coded for easy identification:

- 5 graphing apps (blue) to explore graphs -including the new Advanced Graphing App!
- 2 Special apps (red): the Geometry app and the Spreadsheet app
- 4 Statistics Apps (purple) for descriptive and inferential statistics and data collection
- 4 Solver Apps (orange) for solving specific types of problems (triangles, finance, etc.)
- 3 Explorer Apps (green) for investigating a function's equation and its graph

The Function App

The Function App gives you all the tools you need to explore the properties of functions, including plotting their graphs, creating tables of values, and finding roots, critical points, etc.

1. Press $\xlongequal[\substack{\text { Apps } \\ \text { lito }}]{ }$ and tap on the Function icon. The app opens in Symbolic view.
2. Enter $8-\frac{X^{2}}{6}$ in $\mathrm{F} 1(\mathrm{X})$ and $\frac{X}{2}-1$ in $\mathrm{F} 2(\mathrm{X})$
3. For each function, tap on the color picker to choose a color and check/uncheck it to select/deselect it for graphing
4. Press Plotew to see the graphs of your checked functions

In Plot view, tap Menu to open the menu. The menu buttons are:

- Zoom: opens the Zoom menu
- Trace: toggles tracing off and on
- Go To: enter a specific x-value and the tracer will jump to it
- Fcn: opens a menu of analytic functions
- Defn: displays the definition of a function
- Menu: opens and closes the menu

Things you can do:

- Press (4) or (\mathbb{D} to see that you are currently tracing on F1 (X)
- Tap anywhere on the display and the tracer will jump to the x-value indicated by your finger tap while still remaining on the function being traced.
- Press \odot or Θ to jump from function to function for tracing
- Tap and drag to scroll the graphing window
- Pinch or un-pinch to zoom out or in,
 zoom in and out on the cursor)

The Frn Menu

In the following examples, we will use the options in the Fcn menu to explore our two functions.

Roots

First, we will find one of the roots of our quadratic function, F1(X).

1. Tap anywhere near the left-most root of the quadratic (around $x=-7$)
2. Tap Menu to open the menu (if necessary)
3. Tap Fcn to open the Fen menu
4. From the list, select Root, either by tapping on it, using the direction keys, or pressing frosem γ.

Signed Area

Suppose you wish to find the signed area between the curves, from $x=-9$ to $x=10$.

1. Tap Fcn to open the Functions menu and select Signed Area...
2. Tap near $x=-9$, use the direction keys to move the cursor to $x=-9$ exactly, and tap OK.
3. Now tap near $x=10$ and use the direction keys to move the cursor to $x=10$ exactly

With the touch display, navigation is improved and the experience is more interactive.

As you move the cursor, the area between the curves is filled in graphically. The color display shows you which regions have positive area and which have negative area. The fill patterns have " + " and " - " in them to remind the students that the area is signed.

4. Tap OK to see the area; tap OK again to exit.

Extremum

The Extremum option works in a manner similar to the way Root works.

The Function App: App Functions and App Variables

The five functions from the Fcn menu are available to you from the Home view and they store their last results in variables named after the functions. For example, in the Home view, ROOT(F1(X),-7) will now return -6.928... and that value will be stored in the app variable Root. The table below lists the most common app functions and app variables for the Function App.

Function App: The App Functions and App Variables			
Fcn Option	App Function Name and Syntax	Example	Stores results in
Root	R00T(Expr1,Value)	ROOT(X²-1,0.5)	Root
Intersection	ISECT(Expr1, Expr2, Value)	ISECT(F1(X),3-X,2)	Isect
Slope	Slope(Expr1,Value)	SLOPE(X²-6,3)	Slope
Signed Area...	AREA(Expr1[,Expr2],Val1, Val2)	AREA(F1(X),-6.9,6.9)	SignedArea
Extremum	EXTREMUM(Expr, Value)	EXTREMUM(F2(X),3)	Extremum

1. Press $\underset{\text { Seswe }}{\substack{\text { Smmex }}}$ to return to Symbolic view. We will now look at some of the functionality in the Numeric view of the app.
2. Press Shift $\underset{\substack{\text { Escer } \\ \text { clest }}}{\mathrm{C}}$ to delete all the function definitions. You will be asked to confirm this action. Tap OK.
3. $\operatorname{In} \mathrm{F} 1(\mathrm{X})$, enter $\frac{\left(X^{2}-4\right)}{X-2}$
4. Press Shiff Nume to see the Numeric Setup view of the app. Change the options as shown in the figure to the right.
Note the new menu button: Plot-. If pressed, this button changes the options in this view to match the settings in the Plot view. For example, with the default Plot view, Num Start would be set to -15.9 and Num Step would be set to 0.1. Tracing along the graph in plot view would then mirror navigating through the table: both would show the same (x, y) ordered pairs.
5. Press Nume
to see the Numeric view.
The menu buttons are:

- Zoom: same as the Plot view menu
- Size: chooses a font size
- Defn: displays the column definition
- Column: chooses 1-4 columns

6. With any value in the x-column selected, type 2 to jump to that value.
7. Now press and $^{+}$, and to zoom in and out on that row of the table just as you did to zoom in and out on the cursor in the Plot view.

Function Num Setup	${ }^{17: 020}$
Num Start: 1	
Num Step: 0.1	
Num Zoom: 10	
Num Type: Automatic	
Enter table start value	

X	F 1		
1.5	3.5		
1.6	3.6		
1.7	3.7		
1.8	3.8		
1.9	3.9		
2	undefined		
2.1	4.1		
2.2	4.2		
2.3	4.3		
2.4	4.4		
2.5	4.5		
2			
Zoom			

X	F1			
1.99995	3.99995			
1.99996	3.99996			
1.99997	3.99997			
1.99998	3.99998			
1.99999	3.99999			
2	undefined			
2.00001	4.00001			
2.00002	4.00002			
2.00003	4.00003			
2.00004	4.00004			
2.00005	4.00005			
2				
Zoom		Size	Defn	Column

Example: Dividing Land Equally

Two brothers inherit land that they want to divide equally between them. The local land records indicate that the land is bounded roughly by the two functions
$y=8-\frac{x^{2}}{6}$ and $y=\frac{2^{x-1}}{10}-8$, where x and y are measured in kilometers. If they choose to put up a fence along a border running north and south, where should they put the

X	F 1	F F2	F 3
-1.3	7.718333333	-7.97969369	8.3804396 E 1
-1.2	7.76	-7.97823624	8.5376238 E 1
-1.1	7.798333333	-7.97667418	8.6951929 E 1
-1	7.833333333	-7.975	8.8531125 E 1
-0.9	7.865	-7.97320566	9.0113480 E 1
-0.8	7.893333333	-7.97128254	9.1698650 E 1
-0.7	7.918333333	-7.96922139	9.3286288 E 1
-0.6	7.94	-7.96701230	9.4876045 E 1
-0.5	7.958333333	-7.96464466	9.6467574 E 1
-0.4	7.97333333	-7.96210709	9.8060524 E 1
-0.3	7.985	-7.95938738	9.9654545 E 1
-0.7			

Zoom \quad Size Defn Column

X	F 1	F2	F3	
-0.65	7.929583333	-7.96813598	9.4080923 E 1	
-0.649	7.929799833	-7.96811389	9.4096821 E 1	
-0.648	7.930016	-7.96809178	9.4112719 E 1	
-0.647	7.930231833	-7.96806966	9.4128617 E 1	
-0.646	7.930447333	-7.96804752	9.4144516 E 1	
-0.645	7.9306625	-7.96802536	9.4160414 E 1	
-0.644	7.930877333	-7.96800319	9.4176313 E 1	
-0.643	7.931091833	-7.96798100	9.4192212 E 1	
-0.642	7.931306	-7.96795880	9.4208111 E 1	
-0.641	7.931519833	-7.96793658	9.4224011 E 1	
-0.64	7.931733333	-7.96791435	9.4239910 E 1	
94.1763131674				
Zoom				

Extensions:

- What if the brothers wanted an east-west boundary? Estimate the boundary location.
- The brothers want to divide the land into thirds; where do the north-south boundaries occur?

In this example, we used the Function app to easily visualize and estimate the solution to a typical classroom problem. In our next example (P. 11), we extend that power of visualization.

The Advanced Graphing App

The Advanced Graphing App is designed to plot graphs in the x/y plane. It can handle conic sections, polynomials, inequalities - virtually any mathematical open sentence in two variables or less.

1. Press $\begin{gathered}\text { Apps } \\ \text { nto } \\ \text { and tap on the Advanced }\end{gathered}$ Graphing icon

The app opens in Symbolic view. There are 10 fields (V1-V9 and V0) for defining the graphs you want plotted in the Plot view.
2. In V1, enter $X^{2}+3 Y^{2}+2 X Y-81=0$
3. Tap on the color picker to choose a color for the graph
4. Press ${ }^{\text {Plotemp }}$ sem to see the graph of V 1
5. Tap Menu to open the menu

The menu is basically the same as the menu in the Plot view of the Function app, though without the Fcn menu.

Things you can do:

- Tap anywhere on the display to relocate the cursor
- Pinch or un-pinch to zoom out or in,
 zoom in and out on the cursor)
- Tap and drag to scroll the window
- Trace the edge or jump between points of interest (x-intercepts, intersections, inflections points, etc.)

6. Tap Defn and an editor opens, showing you the current expression in textbook format. Tap Edit and change the = to <.
Hint: tap $\langle, z, \neq \neq$ to open a menu of common relational operators and select <.
7. Tap $O K$ to see the graph of the inequality; tap \quad to exit the editor

The Advanced Graphing App can plot the graphs of many types of relations. The table below lists just a few.

Relations	Examples	Notes
Polynomials in x and y	$x^{2}+3 x^{2}+2 x y-81=0$	a rotated ellipse
	$4 y^{4}-5 x^{2} y^{2}+x^{4}=0$	check out the factors
Linear Inequalities	$2 x+3 y<5$	
Non-Linear Inequalities	$1>0$	plots every pixel
	$\frac{\|x-3\|}{2}<4$	
	$\operatorname{Sin}\left(\left(\sqrt{x^{2}+y^{2}}-5\right)^{2}\right)>\operatorname{Sin}\left(8 * \operatorname{Tan}^{-1}\left(\frac{y}{x}\right)\right)$	see below

The gallery below shows some example graphs. There is also a gallery built-in to the app. From the Plot view of the app, press $\underset{\substack{\text { many }}}{\text { mand }}$ andect Visit Plot Gallery. Swipe left and right to move between graphs.

$\operatorname{Sin}(x)<\operatorname{Sin}(y)$

$\left(\operatorname{Sin}\left((\pi / 2) *\left(\mathrm{X}^{\wedge} 2+(\mathrm{Y}-(((() 3\right.\right.\right.$ NTHROOT $\left.\left(\mathrm{X}^{2}\right)\right)$)))) $\left.\left.)^{2}\right)\right)=1$)

$y \operatorname{Mod} x=3$

$\operatorname{Sin}\left(\left(\sqrt{x^{2}+y^{2}}-5\right)^{2}\right)>\operatorname{Sin}\left(8 * \operatorname{Tan}^{-1}\left(\frac{y}{x}\right)\right)$

Example: An Introduction to Solving Trigonometric Equations

In this activity, we look at introducing students to the topic of solving trigonometric equations. As an example, we take the equation $\sin (x)=\frac{\sqrt{3}}{2}$. If we use this equation as an example to introduce students to the notion of solving trigonometric equations, what do we want them to understand from the very outset? There are three things we want them to see first and foremost:

1. There are an infinite number of solutions
2. These solutions are composed of two branches
3. There is a conventional way of expressing these two branches of infinite solutions in a succinct way
4. Press $\underset{\substack{\text { Apps } \\ \text { pifl }}}{ }$ and tap on the Advanced Graphing app icon; the app opens in Symbolic view.
5. In V1, enter $\sin (x)=\frac{\sqrt{3}}{2}$

Tap on the colored square to the left of V1 to select a color for the graph, or just accept the default.

Advanced Graphing Symbolic View					
$\mathrm{V} \square \mathrm{v} 1: \operatorname{Sin}(\mathrm{x})=\frac{\sqrt{3}}{2}$					
$\square \mathrm{v} 3$:					
$\square \mathrm{V} 4$:					
$\square \mathrm{V} 5$					
$\square \mathrm{v} 6$:					
Enter an open sentence					
Edit	\checkmark	X	Y	Show	Eva

3. Press forme to see the graph.

The graph appears to consist of a set of vertical lines. The vertical lines suggest solutions of the form $x=c$, where c is a real number. The lines are arranged in pairs, suggesting two sets of solutions. You can pinch with your fingers to zoom in or out. Zooming out shows more and more of these pairs of lines, suggesting there are an infinite number of solutions. So far, this graphical representation has done a good job of fulfilling our first two requirements.

The tracer is on the first vertical line to the right of the y-axis and reads $x=1.047 \ldots$ or $x=\pi / 3$. We will now train the tracer to jump from one x-intercept to the next.
$x=2 \pi / 3 x=\pi / 3 x=2 \pi / 3$.

Advanced Graphing Numeric View69:44] 10$]$			
V1			
1.04719755			
2.0943951			
7.33038286			
8.37758041			
13.6135682			
14.6607657			
1.047197551			
Trace	Size	Defn	Column

Example: Implicit Differentiation

If $4 y^{4}-5 x^{2} y^{2}+x^{4}=0$, find $\frac{\delta y}{\delta x}$. This is a typical implicit differentiation problem. The solution shows that the derivative depends on the values of both x and y, but how do students understand this? In this example, we extend the power of visualization to problems of this sort.

1. Though it will not perform implicit differentiation directly, the CAS does handle it in steps, as shown to the right

Hint: enter the expression first, to keep a copy handy. Use Copy to insert it in your subsequent work.

Now we turn to the Advanced Graphing App to explore further.
2. Press $\xlongequal[\substack{\text { Apps } \\ \text { nto }}]{ }$ and tap on the Advanced Graphing icon
3. Enter the equation in V1
4. Press Plotw

The graph appears to be the lines, $y=x, y=-$ $x, y=x / 2$, and $y=-x / 2$. The CAS factor command gives us a way to verify this.
5. Press ك解合s
6. Press

Factor. Then tap on the history and drag back up to your original expression. Tap on it to select it and
 the factors of our expression.

The factors agree with our understanding of the graph. But if the graph consists of those four lines, then the derivative is limited to the values $-1,-1 / 2,1 / 2$, and 1 . How do we reconcile this with the rational expression we have for our derivative?

cas Geometry	4:69
$\begin{array}{lll} 4 & 2 \quad 2 \quad 4 \end{array}$	
	$\partial \mathrm{y}$ (16*y $-5 * \mathrm{x} * 2 * y$
$\int\left(-\left(-10 * x * y^{2}+4 * x^{3}\right\}\right)$	$2 * x^{3}-5 * x * y{ }^{2}$
$\frac{3}{2}\left(\frac{2}{16 * y}-5 * x^{*} * 2 * y\right)$	$\begin{gathered} 2 \\ 5 * x * y-8 * y \end{gathered}$
$\text { factor }\left(\begin{array}{cccc} 4 * y & 2 & 2 & 4 \\ & -5 * x \quad * y & +x \end{array}\right) \quad(y-x) *(y+x) *(2 * y-x) *(2 * y+x)$	
Sto - simplif	

7. Return to CAS view (Satims) and tap simplif. Press F, and select \square_{\square} (the Where command). This command is used to make substitutions.
8. Tap and drag the history until you see our derivative expression. Select it and tap Copy.
9. Move to the second box in the template and enter $\mathrm{y}=\mathrm{x}$

Hint: use lowercase variables in the CAS

11. Simply copy the previous input and edit it for the other substitutions ($y=x / 2$, etc.)

In this example, we extended the power of visualization to include a polynomial in x and y. The graph of the polynomial led to a better understanding of its derivative and to a conjecture regarding its properties, and the power of the CAS let us prove the conjecture. HP Prime, with its CAS and the Advanced Graphing app, represents a new standard in classroom tools to explore mathematics, make conjectures, and pursue proofs.

About the HP Prime Geometry App

The HP Prime Geometry app is a full-featured dynamic geometry application. Because of the unique structure of HP Prime apps, the Geometry app is very well suited for pedagogical purposes. The table below describes the major app views.

Symbolic View	Plot View	Numeric View
- See how a geometric construction was created, step by step - Edit the definition of any geometric object in the construction	- View a geometric construction and its associated measurements and calculations - Manipulate a construction, animate a point, etc. and watch the construction and its measurements change	- Create measurements and calculations to view in Plot view - Run tests on geometric objects, such as whether or not they are parallel, perpendicular, collinear, etc.

Press $\underset{\substack{\text { Apps } \\ \text { nito }}}{ }$ and tap on the Geometry icon.
The app opens in Plot view. The menu button Cmds opens the menu of the most common commands used in Plot view:

- Zoom: zoom in or out, etc.
- Point: points, points on objects, midpoints, intersections, etc.
- Line: segments, lines, tangents, perpendiculars, etc.
- Polygon: triangles, quadrilaterals, and
 special polygons
- Curve: circles and other conic sections, locus of points, graphs of functions, etc.
- Plot: slopefields, ODE's, and other plot types
- Transform: translation, reflection, dilation, etc.
- Cartesian: point coordinates and equations of some geometric objects
- Measure: slope, area, perimeters, etc.
- Tests: test for linearity, parallel or perpendicular lines, etc.

Things you can do:

- Tap and drag to scroll the graphing window
- Pinch and un-pinch to zoom out or in
- Tap any object and press $\underset{\substack{\text { Enter } \\ \text { - } \\ \text { to } \\ \hline}}{ }$ select it; then move it with your finger or the direction keys; press $\underset{\substack{\text { Essc } \\ \text { coaf }}}{ }$ to deselect it.
- Drag any selected point with your finger to move it without selecting it
- Press $\underset{\substack{\text { Symbexp } \\ \text { sseup }}}{\text { - }}$ to enter Symbolic view and see the symbolic definitions of objects in Plot view
- The Commands menu appears here as well. Press cmds to open the menu. Here, the commands are limited to the six categories of geometric objects and their transformations.
- Press Nument to enter Numeric view and see, edit, or create measurements, tests, and calculations based on the objects in Symbolic view (and to show or hide them in Plot view)
- The Commands menu appears here as well. Press cmds to open the menu. Here, the commands are limited to the three categories of measurements, Cartesian properties of geometric objects, and tests on them.

MidpointQuad Numeric View

Example: Exploring Quadrilaterals

In this activity, we use the Geometry app to create a quadrilateral. We then create and connect the midpoints of consecutive sides of the quadrilateral to form another quadrilateral and explore the properties of the latter in terms of the former.

1. Press $\begin{gathered}\text { Apps } \\ \text { nto }\end{gathered}$ and tap the Geometry icon. The app opens in its Plot view.
2. Tap Cmds, Polygon, and select Quadrilateral.
3. Tap a location and press \qquad Eñer to select the first vertex of the quadrilateral. Continue to tap and press
\qquad to select the other three vertices. Press $\begin{gathered}{[\text { Esc }} \\ \text { clow } \\ \text { do } \\ \text { to }\end{gathered}$ quadrilateral command.

Cmds $\mathrm{x}:-3 \mathrm{Y}:-4$
We will now create the segments whose midpoints we want.
4. Press to start the Segment tool (a shortcut). Tap on point A and press
\qquad . Then tap at point B and press
$\underset{\sim}{E n t e r}$. Continue in this fashion to create segments BC, CD, and DA. Press ${ }_{\substack{\text { Esc } \\ \text { Coast }}}^{\text {col }}$ to deselect the Segment tool. In the figure to the right, the segments are named G, H, I, and J.

Now we want to create midpoints for the four sides.
5. Tap Cmds, Point and select Midpoint.

Tap near the midpoint of $\overline{A B}$ and press Enter. Continue likewise to create the midpoints of the other segments. When you are done, press $\underset{\substack{\text { Esce } \\ \text { Cosf }}}{ }$ to deselect the midpoint command.
6. Repeat Steps 2 and 3 to create quadrilateral 0 from points K, L, M, and
 N.

The display now shows both quadrilaterals. We will now tidy up our construction and making it colorful before beginning our explorations.
7. Press of the app. Here, each of the geometric objects is defined symbolically. Objects with checks besides them are displayed in the Plot view. Uncheck each segment by highlighting it and pressing $\quad \checkmark$.
8. With the segments hidden, return to Plot view (press floter) and give the quadrilaterals their own colors. Tap on the original quadrilateral to select it. Tap Options, Choose color, and tap on a color to select it. Or you can tap on the color picker at the bottom left and drag to get any color you like.
9. Repeat Step 8 to select to select a color for the inner quadrilateral.
10. Press M to open the Numeric view of the app. Here we define measurements and tests involving our geometric objects. Tap New to start a new measurement. In this case, it is a test. Tap Cmds, Tests, and select Parallelogram. The command is pasted into the command line. Remember that the name of our inner quadrilateral is GO. Tap Vars, select GO and press \qquad . Tap \quad to check this test for display in the Plot view.
11. Tap Label. An edit line opens for you to supply a label. Type "Is KLMN a parallelogram?" and press \qquad Enter .
12. Return to the Plot view to see our constructions and the test result.

We are now ready to explore our construction.

1. Select one of the vertices of the outer quadrilateral by tapping on it and pressing Enter . You can now drag it anywhere within the display with your finger. As you move a vertex, notice that the parallelogram test on KLMN maintains a value of 1 , indicating it is always a parallelogram.
2. Press $\begin{gathered}\text { Esce } \\ \text { case } \\ \text { to } \\ \text { to }\end{gathered}$

The parallelogram test can return 5 values:
0. Not a parallelogram

1. A parallelogram only
2. A rhombus
3. A rectangle
4. A square

It seems that KLMN is always at least a parallelogram, no matter where we move the coordinates of points A, B, C, and D (as

 long as they are not collinear!).

Let's make ABCD a rectangle.
3. Move points A, B, C, and D so that they appear to form something close to a rectangle. In the figure to the right, the opposite sides of ABCD appear to be roughly equal in length and consecutive sides appear perpendicular.
4. Press كumbe to open the Symbolic view of the app and observe the definitions of points A, B, C, and D.

We shall edit the coordinates of these points so that they are more exactly the coordinates of a parallelogram.
Specifically, in our case (but not necessarily yours), we will make the following changes:

- GA: point(-1, -6)
- GB: point $(-1,1)$
- GC: point $(10,1)$
- GD: point(10, -6)

5. Tap on the definition of GA to select it.
6. Tap Edit to edit the definition
7. Delete the current coordinates and enter your own. Press Eñer or tap $O K$ when you are done.

In the top figure to the right, the coordinates of point A are being changed to (-1, -6).
8. Repeat Steps 5-7 with points B, C, and D
9. Press flotex to return to Plot view to see what has changed.

In this case, the test result has changed to 2, indicating that KLMN is a rhombus. Making ABCD a rectangle seems to make KLMN a rhombus. We will now change ABCD, but keep it a rectangle and see how the test behaves.
10. Tap on segment AD, between point
 select it. A pop-up box will appear; make sure segment $A D$ (object J) is selected and any others deselected; then tap OK.

11. You can now use the up- or downdirection keys to move the segment, maintaining ABCD as a rectangle.

You will note that the test continues to return a value of 2 , indicating that if ABCD is a rectangle, then KLMN is a rhombus.

This example was used to illustrate the technique involved:

- In Plot view, move A, B, C, or D to form what appears to be a special quadrilateral
- Go to Symbolic view and edit the definitions to make the coordinates exact
- Return to Plot view to see the effects on the test results
- Manipulate ABCD, keeping its properties intact and see if the test result changes

We can make ABCD a kite, a rhombus, a rectangle, a square, or a trapezoid. For each quadrilateral type, we can make a conjecture about KLMN. With the testing and symbolic abilities of the Geometry app, students can set about the proofs or refutations of conjectures such as these:

- If $A B C D$ is a rhombus, then KLMN is a rectangle
- If ABCD is a rectangle, then KLMN is a rhombus
- If $A B C D$ is an isosceles trapezoid, then KLMN is a rhombus
- If the diagonals of ABCD are perpendicular, then KLMN is a rectangle
- If the diagonals of ABCD are congruent, then KLMN is a rhombus

Example: Slope and Derivative of a Function

In this activity, we construct a visualization tool for the derivative of a function.

1. Press $\xlongequal[\substack{\text { Apps } \\ \text { nto }}]{ }$, use the direction keys to select the Geometry icon, and tap Reset.
You will be asked to confirm the reset; tap OK .
2. Tap Cmds, Plot, and select Function. An edit line opens with plotfunc() and new menu buttons appear with x and y . Enter the function $\frac{x^{3}}{2}-\frac{x^{2}}{2}-3 x+1$ after the parenthesis and tap $O K$ The graph of the function is drawn. Press to to zoom in.

Note: the Geometry app uses lowercase x as the independent variable for functions.
3. Tap Cmds, Point, and select Point On. Tap on the graph (it will turn red when selected). In the figure to the right, the bottom of the display shows the help (Select an object) and the current command (element(GA, -1.46)).
Press \qquad . Point B appears, defined as a point on the graph. Press Esce to exit this command.
4. Tap Cmds, Line, and select Tangent.

Tap on the curve and press \square
Then tap on point B and press $\underset{\approx}{\text { Enter }}$.

The tangent to the function through point B is drawn.
5. Tap point B and press \square Enter to select it. You can now drag point B along the curve with your finger or use the direction keys and the tangent line will follow.
6. Press sumbe to see the Symbolic view of the app. All objects created in the Plot view have their symbolic definitions here.

We will now define the a new point. The $x-$ coordinate of this point will be the same as point B and the y-coordinate will be the same as the slope of the tangent. The new point D will be a point on the derivative of the function.
7. Tap on the new line at the bottom of Symbolic view.
8. Tap New to create new object. Tap Cmds, Point, and select Point. The point() command appears in the edit line.
9. Press men and tap if needed. Press Vars Vm to access commands that begin with the letters $A B$ and select Abscissa. Tap Vars and select GB. Move past the right parenthesis, press Eail slope command. The completed definition is shown to the right.
10. Press flote to return to Plot view. As you move point B, you can see that point D moves along the derivative.

We are now ready to use our construction!

We will now give our geometric objects their own distinctive colors.

1. Return to Plot view and tap the function. Tap Options and select Choose color>. A color palette opens. Either tap a color or tap the color picker at the bottom left. Here you can drag to get the color you want and tap OK.
2. Repeat Step 1 to choose colors for the tangent and point D . In the figure at the top right, the function is in blue, the tangent is green, and point D is purple.

Point B, as a point on an object, automatically has its own slider bar. The slider bar can be used to manually move point B or to animate its movement. We will now activate the trace of point D and then animate point B to draw the slope function.
3. Tap point D. Tap Options and select Trace. Now as you move point B, a trail is drawn. As you continue to drag, the shape of the derivative function emerges, as shown to the right.
4. The top left of the screen shows the x coordinate of point B. Tap and hold on this measurement. A slider bar will appear. You can move the slider left and right and point B will follow. Tap
Edit. . Here you can set the minimum, maximum, and step values for the movement of point B. You can also animate the movement of point B. Select Back and forth animation and press \qquad $\underset{\approx}{\text { Enter }}$.
 animation will commence. To start and stop an animation, tap Options and select Animate (it is a toggle, like Trace).
6. Tap Options and select Trace again to deselect it (it is a toggle). Now point D will no longer show its trail. You can erase the current trace by selecting clear trace in the

You now have a construction that has a number of methods to visualize the derivative of a function:

- Move point B and see a single point on the derivative that has the same x-value as point B
- Move or animate point B and leave a trace of points on the derivative

Your students can now visualize the graph of the derivative of any function using this one construction.

The Spreadsheet App

The Spreadsheet App gives you the most common features you expect in a spreadsheet. But with HP Prime, you also get the power of a CAS integrated with the spreadsheet.

Press I and tap the Spreadsheet icon. The app opens in Numeric view-its only view. The menu keys are:

- Format: opens the Format menu (see figure to the right and below)
- Go To: jumps to a specified cell
- Select: activates Selection mode
- Go: determines which cell is selected after you tap OK

Things you can do:

- Tap and drag to scroll through the spreadsheet
- Tap and hold to invoke Selection mode; then drag to select a rectangular block of cells
- Pinch open or closed horizontally to change the width of a column
- Pinch open or closed vertically to change the height of a row
- Enter contents into a cell (number,

CAS	Spreadsheet				
4p A	B		C	D	E
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					
	Format	Go To	Select	Go \downarrow	

The Spreadsheet app can return numerical approximations for a formula, or it can use the CAS to return exact numeric or symbolic results. The examples in this section will cover both uses.

To get started in the Spreadsheet app, here is a simple exercise that illustrates the CAS and non-CAS uses of the app.

1. Select cell A1, type $12 / 15$, and press

2. Select cell A2 and type the same thing, but before you press $\underset{\substack{\text { Enter } \\ \text { End }}}{ }$, tap CAS . The dot next to CAS shows the CAS is now active.

A1 is evaluated numerically, but A2 is simplified using the CAS. Select B1 to see the acronym CAS at the start of its formula.

Example: Pascal's Triangle

Next we define the entire spreadsheet with a single command.

1. Tap the upper-left corner to select the entire sheet. Press Shift \square to start a new formula. Press tap Probability, and select Combinations. Between the parentheses, enter Row-1,Col-1, as shown to the right.

Hint: Row and Col are Spreadsheet app variables. To retrieve Row, press $\begin{gathered}\text { Vars } \\ \text { clase }\end{gathered}$,tap App, tap Spreadsheet, tap Numeric, and select Row. Select Col in a similar manner. You can always just type names in letter by letter, using $\xlongequal{\text { AlPFAA }}$ for uppercase

CAS	Spreadsheet				14:50]
60 A	B		C	D	E
1 .8 2	$4 / 5$				
2					
3					
4					
5					
6					
7					
8					
9					
10					
CFSE12/1					
Edit	Format	Go To	Select	Go \downarrow	Show

Spreadsheet					${ }^{11: 39}$-1]
6p) A	B	C		D	E
1 1	0	0		0	0
2 1	1	0		0	0
3 1	2	1		0	0
4 1	3	3		1	0
5 1 6	4	6		4	1
6 1	5	10		10	5
7 1	6	15		20	15
8 1 9	7	21		35	35
9 1	8	28		56	70
1011	19	36		84	126
= COMB(Row-1,Col-1)					
Edit	Format	Go To	Select	Go \downarrow	

2. Tap $O K$ to see the spreadsheet fill with Pascal's triangle! Use your finger to scroll through the spreadsheet.
3. To clear the entire spreadsheet, tap on the upper-left corner and press

Esc
Clear

Example: The Fibonacci Sequence Another important variable for the Spreadsheet app is Cell, as you will see in our next example.

1. Tap on the column header for Column A to select it.
2. Press Shift \doteq to start a new formula. Then enter Cell(Row$2,1)+$ Cell(Row-1,1) as shown to the right.
3. Tap $O K$ to see Column A fill with zeroes.
4. But now enter 1 in cell A1 to see Column A fill with the Fibonacci sequence.

You can now appreciate the value of the app variables Cell, Col, and Row!
Example: Back to Pascal's Triangle
Here is another CAS example that involves symbolic results.

In the example to the right, we use the CAS to define one column of the spreadsheet to expand the binomial $x+1$ to various integer powers. Note the expression editor shows a CAS button: CAS. When active, the CAS is used to evaluate the formula. When it is not active, the formula is used to obtain numerical results.

Imagine all the patterns you and your

das	Spreadsheet				${ }^{18511}$
6jp A	B	C		D	E
1 1					
2 2					
3					
$4{ }_{4} 4$					
55					
68					
7 13					
$8 \quad 21$					
934					
1055					
	Format	Go To	Select	Go \downarrow	Show

 students can explore in symbolic expressions!

Examination Mode

HP Prime can be configured and locked for an examination. The machine will remain locked for a pre-set time period and secured with a password. LED lights at the top of the unit will flash to show that it is in examination mode.

1. Press Shift semims to enter Home Settings
2. Swipe upwards to get to the third page; the header will say Exam Mode. Alternately, press the right halves of Page $1 / 3$ and Page $2 / 3$.

The menu keys are:

- Config: opens the Configuration page, where you can check which features you want disabled
- Choose: opens a choose box
- Page: tap the left help to go up a page and the right half to go down a page in the Home Settings
- More: opens a menu of options to copy or reset the current configuration
- Start/Send: starts Exam mode on the current HP Prime or send it to another HP Prime (Start changes to Send if Prime is connected via USB)

Exam Mode				
Configuration: Default Exam				
Timeout: 15 Minutes				
Default Angle:	No change			
Password:				
Erase memory:				
Blink LED:				
Choose exam mode configuration				
Config	Choose			

Things you can do:

- Give your configuration a name
- Set a time period
- Set a password
- Check a box to erase memory when examination mode starts
- Check a box to make the LED lights blink while in examination mode.

3. Tap More Copy, and enter a name for our new configuration: EXAM2014
4. Tap Timeout, then tap Choose and select a time period.
5. Tap Default Angle, then tap Choose and select a default angle measure
6. Tap Blink LED twice (to select it and check it)

We are now ready to define our EXAM2014 configuration.
7. Tap Config to enter the Configuration page
8. Tap User Apps to disable saved apps with their data
9. Tap CAS to disable the CAS
10. Tap New Notes and Programs to disable the Note and Program editors
11. Tap and drag to scroll down the tree until you see the entry Mathematics. Tap on the plus sign (+) next to Mathematics to expand the tree
12. Tap on Hyperbolic to disable all hyperbolic trigonometric functions
13. Tap on the plus sign next to Probability to expand the tree another level and tap COMB and PERM to disable the individual functions ${ }_{n} \mathrm{C}_{\mathrm{r}}$ and ${ }_{n} \mathrm{P}_{\mathrm{r}}$
14. Tap OK to save this configuration with your new name: EXAM2014
15. Press Start to start Exam Mode on the device, or if it is connected to another HP Prime, press Send to start Exam Mode on the attached HP Prime

Exam Mode			69:60]
Configuration: EXAM2014			\checkmark
Timeout: 8 Hours			*
Default Angle: Radians			*
Password: 12345			
Erase memory:			
Blink LED: \square			
Blink LED while in exam mode			
Config	fig $\sqrt{ }$	More	Start

Exam Mode Configuration

田 \square System Apps
V User Apps
Physics
Help
\square Units
\square Matrices
Complex
V CAS
I/O
\square Notes and Programs
New Notes and Programs
田- Mathematics
Cancel OK

Once Exam Mode starts, the LED lights will blink to show that the configuration is in effect. All HP Prime calculators that were sent the same Exam Mode configuration from the same HP Prime will blink in unison using the same random pattern of the 3 color lights. You can also create and send exam mode configurations from the HP Connectivity Kit, discussed next.

The HP Prime Connectivity Kit

The HP Connectivity Kit allows you to connect to one or more HP Prime calculators via USB or wirelessly. With the HP Prime Wireless Kit, you can create an HP Prime Wireless Classroom Network. Within this wireless network, you can monitor student progress, poll the class, send HP Prime content (apps, programs, notes, etc.), and both send and receive short messages.

The Connectivity Kit has three main areas:

- Calculator Pane

- See the list of connected HP Prime calculators by name
- View data on a connected calculator, edit apps, write programs, etc.
- Synchronize the new data with the connected HP Prime calculator
- Content Pane
- Create and edit Exam Mode configurations, create polls and quizzes, store programs and apps you want to send to the class, etc.
- Send content and exam mode configurations to the class or an individual
- Work Area
- see all HP Prime displays, monitor students, etc. using the Monitor window
- send and receive messages using the Messages window
- share one student's display for discussion purposes

