

hp calculators

HP 10s Solving Compound Interest Problems

Compound Interest

Practice Solving Compound Interest Problems

HP 10s Solving Compound Interest Problems

Compound interest

Interest is a charge for the use of money. There are two types of interest calculations: <u>simple</u> and <u>compound</u>. With the former, only the original amount of money (i.e. the principal) earns interest for the entire life of the transaction:

interest = principal × interest rate × time

For example, suppose you put \$1,000 in the bank at 6% simple interest for 3 years. You would earn $$1,000 \times 6\% \times 3 =$ \$180. In essence, you receive \$60 in interest at the end of each year. By *adding the interest* to the principal each year you could earn more money: suppose at the end of the first year, you withdraw the \$1,060, go to another bank, and deposit a balance of \$1,060. The second year you will earn \$1,060 \times 6\% \times 1 = \$63.60. You do the same thing again and, at the end of the third year, earn \$1,123.60 \times 6\% \times 1 = \$67.42. So instead of \$180, you receive \$191.02. This is the way *compound* interest works: each time the interest is paid, it is added to the balance. Calculations involving compound interest use the following formula:

 $\mathsf{F} = \mathsf{P}(1+\mathsf{i})^{\mathsf{n}}$

where *F* is the future value, *P* is the principal, *i* is the interest rate and *n* is the number of compounding periods. Compound interest is usually "compounded" (i.e. paid) annually, but it may also be monthly, quarterly or semiannually.

Even though the HP 10s is a scientific calculator, it can solve a wide variety of compound interest problems. Several examples are shown below.

Practice solving compound interest problems

Example 1:	Calculate the future value of \$3,000 invested at 7% for 5 years.
Solution:	The future value is given by the compound interest formula: $F = 3000 \cdot (1 + 7\%)^5$. Press:
	$3000 \times (1+ \cdot 07)^{yx} =$
Answer:	\$4,207.66, rounded to the nearest cent.
Example 2:	Find the principal which yields \$25,000 when invested at 3% annually for 20 years.
Solution:	The principal is $P = \frac{F}{(1+i)^n} = \frac{25000}{(1+3\%)^{20}}$, which can be calculated as follows:
	$25000 \div (1+ \cdot 03)^{yx} 20 =$
Answer:	The principal that must be invested is \$13,841.89.
Example 3:	How many time periods are needed to increase \$10,000 at 8.5% annual interest to \$15,000?

hp calculators

HP 10s Solving Compound Interest Problems

The unknown value is now n, which is given by: $n = ln \left(\frac{F}{P}\right) / \ln(1+i)$. In this example: Solution:

$$n = \frac{\ln(15000/10000)}{\ln(1+8.5\%)}$$
. The keystroke sequence is then:

$$\begin{bmatrix} \ln (15000 \div 1000) \div \ln (1+ \cdot 085) = \\ \end{bmatrix}$$

n = 4.97, so the number of time periods is five. Answer:

Example 4: Find the annual interest rate that produces \$100,000 from \$20,000 in 15 years.

Solution: The formula is now:
$$i = \left(\frac{F}{P}\right)^{\frac{1}{n}} - 1$$
, where F = 100000, P = 20000 and n = 15:
100000 ÷ 20000 = y^x 15 x^x - 1 =
Answer: i = 0.1133 or 11.33%.

= 0.1133 or 11.33%. Answer. 1.