hp calculators

HP 10s Solving Compound Interest Problems

Compound Interest
Practice Solving Compound Interest Problems

Compound interest

Interest is a charge for the use of money. There are two types of interest calculations: simple and compound. With the former, only the original amount of money (i.e. the principal) earns interest for the entire life of the transaction:

$$
\text { interest }=\text { principal } \times \text { interest rate } \times \text { time }
$$

For example, suppose you put $\$ 1,000$ in the bank at 6% simple interest for 3 years. You would earn $\$ 1,000 \times 6 \% \times 3=$ $\$ 180$. In essence, you receive $\$ 60$ in interest at the end of each year. By adding the interest to the principal each year you could earn more money: suppose at the end of the first year, you withdraw the $\$ 1,060$, go to another bank, and deposit a balance of $\$ 1,060$. The second year you will earn $\$ 1,060 \times 6 \% \times 1=\$ 63.60$. You do the same thing again and, at the end of the third year, earn $\$ 1,123.60 \times 6 \% \times 1=\$ 67.42$. So instead of $\$ 180$, you receive $\$ 191.02$. This is the way compound interest works: each time the interest is paid, it is added to the balance. Calculations involving compound interest use the following formula:

$$
F=P(1+i)^{n}
$$

where F is the future value, P is the principal, i is the interest rate and n is the number of compounding periods.
Compound interest is usually "compounded" (i.e. paid) annually, but it may also be monthly, quarterly or semiannually.
Even though the HP 10s is a scientific calculator, it can solve a wide variety of compound interest problems. Several examples are shown below.

Practice solving compound interest problems

Example 1: Calculate the future value of $\$ 3,000$ invested at 7% for 5 years.
Solution: The future value is given by the compound interest formula: $F=3000 \cdot(1+7 \%)^{5}$. Press:

Answer: $\$ 4,207.66$, rounded to the nearest cent.
Example 2: Find the principal which yields $\$ 25,000$ when invested at 3% annually for 20 years.
Solution: The principal is $P=\frac{F}{(1+i)^{n}}=\frac{25000}{(1+3 \%)^{20}}$, which can be calculated as follows:

Answer: \quad The principal that must be invested is $\$ 13,841.89$.
Example 3: How many time periods are needed to increase $\$ 10,000$ at 8.5% annual interest to $\$ 15,000$?

Solution: The unknown value is now n , which is given by: $n=\ln \left(\frac{F}{P}\right) / \ln (1+i)$. In this example:
$n=\frac{\ln (15000 / 10000)}{\ln (1+8.5 \%)}$. The keystroke sequence is then:

Answer: $\quad n=4.97$, so the number of time periods is five.
Example 4: Find the annual interest rate that produces $\$ 100,000$ from $\$ 20,000$ in 15 years.
Solution: The formula is now: $i=\left(\frac{F}{P}\right)^{\frac{1}{n}}-1$, where $\mathrm{F}=100000, \mathrm{P}=20000$ and $\mathrm{n}=15$:

Answer: $\quad i=0.1133$ or 11.33%.

